支持向量回归(SVR)的详细介绍以及推导算法

1 SVR背景

2 SVR原理

3 SVR数学模型

  1. SVR的背景
    SVR做为SVM的分支从而被提出,一张图介绍SVR与SVM的关系
    SVR与SVM的联系
    这里两虚线之间的几何间隔r= d ∣ ∣ W ∣ ∣ \frac{d}{||W||} Wd,这里的d就为两虚线之间的函数间隔。
    (一图读懂函数间隔与几何间隔)
    在这里插入图片描述
    这里的r就是根据两平行线之间的距离公式求解出来的
    在这里插入图片描述

  2. SVR的原理

SVR与一般线性回归的区别

SVR一般线性回归
1.数据在间隔带内则不计算损失,当且仅当f(x)与y之间的差距的绝对值大于 ϵ \epsilon ϵ才计算损失1.只要f(x)与y不相等时,就计算损失
2.通过最大化间隔带的宽度与最小化总损失来优化模型2.通过梯度下降之后求均值来优化模型

在这里插入图片描述

原理:SVR在线性函数两侧制造了一个“间隔带”,间距为 ϵ \epsilon ϵ(也叫容忍偏差,是一个由人工设定的经验值),对所有落入到间隔带内的样本不计算损失,也就是只有支持向量才会对其函数模型产生影响,最后通过最小化总损失和最大化间隔来得出优化后的模型。

注:这里介绍一下支持向量的含义:直观解释,支持向量就是对最终w,b的计算起到作用的样本(a>0)

如下图所示, "管道"内样本对应a=0,为非支持向量;
位于“管壁”上的为边界支持向量,0<a< ϵ \epsilon ϵ
位于"管道"之外的为非边界支持向量,a> ϵ \epsilon ϵ(异常检测时,常从非边界支持向量中挑选异常点)
在这里插入图片描述

  1. SVR的数学模型

3.1线性硬间隔SVR

在这里插入图片描述
在这里插入图片描述

3.2线性软间隔SVR
原因:在现实任务中,往往很难直接确定合适的 ϵ \epsilon ϵ ,确保大部分数据都能在间隔带内,而SVR希望所有训练数据都在间隔带内,所以加入松弛变量 ξ \xi ξ ,从而使函数的间隔要求变的放松,也就是允许一些样本可以不在间隔带内。
在这里插入图片描述

引入松弛变量后,这个时候,所有的样本数据都满足条件:

在这里插入图片描述

这就是映入松弛变量后的限制条件,所以也叫-------软间隔SVR

注:对于任意样本xi,如果它在隔离带里面或者边缘上, ξ \xi ξ 都为0;在隔离带上方则为 ξ > 0 , ξ ∗ = 0 \xi>0,\xi^*=0 ξ>0,ξ=0
在隔离带下方则为 ξ ∗ > 0 , ξ = 0 \xi^*>0,\xi=0 ξ>0,ξ=0

在这里插入图片描述

在这里插入图片描述

参数推导:
拉格朗日乘子法(可将约束条件变成无约束的的等式方程)

u i ⩾ 0 , u i ∗ ⩾ 0 , a i ⩾ 0 , a i ∗ ⩾ 0 u_i\geqslant0,u^*_i\geqslant0,a_i\geqslant0,a^*_i\geqslant0 ui0,ui0,ai0,ai0为拉格朗日系数
构建拉格朗日函数:
在这里插入图片描述

3.3非线性(映射,核函数)
在这里插入图片描述
启发:提高维度,低维映射到高维(非线性变线性)

之前的SVR低维数据模型是以内积xi*xj的形式出现:
在这里插入图片描述

现定义一个低维到高维的映射 Φ \varPhi Φ: 来替代以前的内积形式:
在这里插入图片描述

在这里插入图片描述
表示映射到高维特征空间之后的内积

映射到高维的问题:
2维可以映射到5维
但当低维是1000映射到超级高的维度时计算机特征的内积
这个时候从低维到高维运算量会爆炸性增长

由于特征空间维数可能很高,甚至是无穷维,因为直接计算 Φ ( x i ) T Φ ( x j ) \varPhi(x_i)^T\varPhi(x_j) Φ(xi)TΦ(xj) 通常是困难的,这里就要设计到核函数

在这里插入图片描述

结果表明:核函数在低维计算的结果与映射到高维之后内积的结果是一样的

主要改变:非线性转化,主要通过改变内积空间替换成另外一个核函数空间而从而转化到另外一个线性空间

在这里插入图片描述

核函数的隆重出场:核函数是对向量内积空间的一个扩展,使得非线性回归的问题,在经过核函数的转换后可以变成一个近似线性回归的问题
在这里插入图片描述

在这里插入图片描述

  1. 实战案例

代更。。。。。。。

SVR支持向量回归)是一种回归算法,用于解决连续数值预测问题。与其他回归算法相比,SVR的独特之处在于其使用支持向量机的原理,通过将数据映射到高维特征空间中,在寻找最佳分割超平面时考虑了样本自身的分布情况。 SVR算法的核心思想是构建一个超平面,使得训练数据点与该超平面的距离尽可能小,并且超平面之外的点与超平面的距离小于等于一个预设的边界值。这个预设的边界值被称为容忍度(epsilon),容忍度的大小决定了预测结果的精确度和模型的复杂度。 在SVR算法中,通过选择合适的核函数,可以将低维的输入数据映射到高维特征空间中,从而更好地解决非线性问题。常用的核函数有线性核、多项式核和径向基核等。 SVR算法的训练过程可以通过求解一个凸二次规划问题来完成,通过求解得到最佳的超平面模型,从而进行预测。在预测阶段,通过计算新样本点与超平面之间的距离,可以得到预测结果。 SVR算法具有较强的泛化能力和鲁棒性,适用于各种预测问题,如股票价格预测、房价预测等。同时,SVR算法还可以处理具有离群点的数据集,不容易受到异常值的影响。 总而言之,SVR算法是一种支持向量机回归方法,通过利用支持向量机的原理,将样本映射到高维特征空间中,并构建一个最佳的超平面模型。这种算法适用于连续数值预测问题,具有较强的泛化能力和鲁棒性。
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值